Exercise 18

Solve the initial-value problem.

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0, \quad y(0)=2, \quad y^{\prime}(0)=2
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}-2\left(r e^{r x}\right)-3\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r-3=0
$$

Solve for r.

$$
\begin{gathered}
(r-3)(r+1)=0 \\
r=\{-1,3\}
\end{gathered}
$$

Two solutions to the ODE are e^{-x} and $e^{3 x}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-x}+C_{2} e^{3 x} .
$$

Differentiate the general solution.

$$
y^{\prime}(x)=-C_{1} e^{-x}+3 C_{2} e^{3 x}
$$

Apply the initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
y(0) & =C_{1}+C_{2}=2 \\
y^{\prime}(0) & =-C_{1}+3 C_{2}=2
\end{aligned}
$$

Solving this system of equations yields $C_{1}=1$ and $C_{2}=1$. Therefore, the solution to the initial value problem is

$$
y(x)=e^{-x}+e^{3 x} .
$$

Below is a graph of $y(x)$ versus x.

